Hydrogeochemical Study of Hot Springs along the Tingri—Nyima Rift: Relationship between Fluids and Earthquakes

Author:

Zhao Deyang1ORCID,Zhou Xiaocheng23ORCID,Zhang Yongxian2,He Miao2,Tian Jiao2,Shen Junfeng3,Li Ying23,Qiu Guilan1,Du Fang1,Zhang Xiaoming1,Yang Yao1,Zeng Jun1,Rui Xuelian1,Liao Feng1,Guan Zhijun1

Affiliation:

1. Sichuan Earthquake Administration, Chengdu 610041, China

2. United Laboratory of High-Pressure Physics and Earthquake Science, Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

3. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

Abstract

Studying the hydrogeochemical characteristics of hot springs provides essential geochemical information for monitoring earthquake precursors and understanding the relationship between fluids, fractures, and earthquakes. This paper investigates the hydrogeochemical characteristics of hot springs along the Tingri–Nyima Rift (TNR) in southern Tibet, a seismically active zone at the collision front of the Indian and Asian-European plates. The major elements, hydrogen, and oxygen isotopes of seven thermal springs were analyzed from July 2019 to September 2021. The findings indicate that Mount Everest’s meteoric water, which has a recharge elevation of roughly 7.5–8.4 km, is the main source of recharge for the hot springs. The water samples have two main hydrochemical types: HCO3-Na and Cl-Na. The temperature of the geothermal reservoir is between 46.5 and 225.4 °C, while the circulation depth is between 1.2 and 5.0 km based on silica-enthalpy mixing models and traditional geothermometers. Furthermore, continuous measurements of major anions and cations at the Yundong Spring (T06) near Mount Everest reveal short-term (8 days) seismic precursor anomalies of hydrochemical compositions before an ML4.7 earthquake 64.36 km away from T06. Our study suggests that seismicity in the northern section of the TNR is controlled by both hydrothermal activity and tectonic activity, while seismicity in the southern section is mainly influenced by tectonic activity. In addition to magnitude and distance from the epicenter, geological forces from deep, large fissures also affect how hot springs react to seismic occurrences. A fluid circulation model is established in order to explain the process of groundwater circulation migration. The continuous hydrochemical monitoring of hot springs near Everest is critical for studying the coupling between hot springs, fractures, and earthquakes, as well as monitoring information on earthquake precursory anomalies near Everest.

Funder

Earthquake Tracking Task of CEA

National Key Research and Development Project

Central Public-interest Scientific Institution Basal

the National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3