Physicochemical Characterization of Thermally Processed Goose Bone Ash for Bone Regeneration

Author:

Abdul Rahman Fatimah Suhaily1,Abdullah Abdul Manaf2ORCID,Radhi Asanah3,Shahidan Wan Nazatul Shima1,Abdullah Johari Yap1ORCID

Affiliation:

1. School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia

2. School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia

3. Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia

Abstract

Goose bone is traditionally applied for many ailments including bone fractures. Goose bone that consists of calcium phosphate plays a major role in bone regeneration. In this study, the production of goose bone ash (GBA) was translated from a traditional process into one of a laboratory scale via thermal and mechanical methods. The GBA was thermally processed via calcination at 300 °C and 900 °C. The differences in physicochemical properties between studied GBA (SGBA) and commercial GBA (CGBA) were elucidated via Fourier transform infrared (FT-IR), X-ray fluorescence (XRF), X-ray diffraction (XRD) and electron diffraction X-Ray (EDX). The morphological properties of SGBA and CGBA were characterized using field emission scanning electron microscopy (FESEM) in which nano-sized particles were detected. The results showed that the SGBA of 300 °C had comparable physicochemical properties to those of CGBA. A high processing temperature was associated with decreasing organic compounds and increasing crystallinity. The finding from EDX suggests that sintering at 900 °C (SGBA 900) demonstrated the presence of hydroxyapatite in the mineralogical phase and had a Ca/P atomic ratio of 1.64 which is comparable to the ideal stoichiometric ratio of 1.67. Findings from this study could be used for the further exploration of GBA as a potential material for bone regeneration via the elucidation of their biological properties in the next experimental setting.

Funder

Roxhana Ventures Sdn. Bhd via Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Reference49 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3