Si-Disordering in MgAl2O4-Spinel under High P-T Conditions, with Implications for Si-Mg Disorder in Mg2SiO4-Ringwoodite

Author:

Liu Liping,Liu Xi,Bao XinjianORCID,He Qiang,Yan Wei,Ma Yunlu,He Mingyue,Tao Renbiao,Zou Ruqiang

Abstract

A series of Si-bearing MgAl2O4-spinels were synthesized at 1500–1650 °C and 3–6 GPa. These spinels had SiO2 contents of up to ~1.03 wt % and showed a substitution mechanism of Si4+ + Mg2+ = 2Al3+. Unpolarized Raman spectra were collected from polished single grains, and displayed a set of well-defined Raman peaks at ~610, 823, 856 and 968 cm−1 that had not been observed before. Aided by the Raman features of natural Si-free MgAl2O4-spinel, synthetic Si-free MgAl2O4-spinel, natural low quartz, synthetic coesite, synthetic stishovite and synthetic forsterite, we infer that these Raman peaks should belong to the SiO4 groups. The relations between the Raman intensities and SiO2 contents of the Si-bearing MgAl2O4-spinels suggest that under some P-T conditions, some Si must adopt the M-site. Unlike the SiO4 groups with very intense Raman signals, the SiO6 groups are largely Raman-inactive. We further found that the Si cations primarily appear on the T-site at P-T conditions ≤~3–4 GPa and 1500 °C, but attain a random distribution between the T-site and M-site at P-T conditions ≥~5–6 GPa and 1630–1650 °C. This Si-disordering process observed for the Si-bearing MgAl2O4-spinels suggests that similar Si-disordering might happen to the (Mg,Fe)2SiO4-spinels (ringwoodite), the major phase in the lower part of the mantle transition zone of the Earth and the benchmark mineral for the very strong shock stage experienced by extraterrestrial materials. The likely consequences have been explored.

Funder

Chinese Academy of Sciences

MOST, China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3