Abstract
Among the various agro-industrial by-products, sugar beet molasses produced by sugar refineries appear as a potential feedstock for ethanol production through yeast fermentation. A response surface methodology (RSM) was developed to better understand the effect of three process parameters (concentration of nutrient, yeast and initial sugar) on the ethanol productivity using diluted sugar beet molasses and Saccharomyces cerevisiae yeast. The first set of experiments performed at lab-scale indicated that the addition of 4 g/L of nutrient combined with a minimum of 0.2 g/L of yeast as well as a sugar concentration lower than 225 g/L was required to achieve high ethanol productivities (>15 g/L/d). The optimization allowed to considerably reduce the amount of yeast initially introduced in the fermentation substrate while still maximizing both ethanol productivity and yield process responses. Finally, scale-up assays were carried out in 7.5 and 100 L bioreactors using the optimal conditions: 150 g/L of initial sugar concentration, 0.27 g/L of yeast and 4 g/L of nutrient. Within 48 h of incubation, up to 65 g/L of ethanol were produced for both scales, corresponding to an average ethanol yield and sugar utilization rate of 82% and 85%, respectively. The results obtained in this study highlight the use of sugar beet molasses as a low-cost food residue for the sustainable production of bioethanol.
Funder
Consortium de Recherche et Innovations en Bioprocédés Industriels au Québec
Conseil de Recherches en Sciences Naturelles et en Génie du Canada
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献