Optimization of Biodegradation of Common Bean Biomass for Fermentation Using Trichoderma asperellum WNZ-21 and Artificial Neural Networks

Author:

Alrdahe Salma Saleh1ORCID,Moussa Zeiad2ORCID,Alanazi Yasmene F.3ORCID,Alrdahi Haifa4,Saber WesamEldin I. A.2ORCID,Darwish Doaa Bahaa Eldin15ORCID

Affiliation:

1. Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

2. Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt

3. Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

4. School of Computer Science, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK

5. Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt

Abstract

This study showcases a promising approach to sustainably unlocking plant biomass residues by combining biodegradation with artificial intelligence to optimize the process. Specifically, we utilized the definitive screening design (DSD) and artificial neural networks (ANNs) to optimize the degradation of common bean biomass by the endophytic fungus Trichoderma asperellum WNZ-21. The optimized process yielded a fungal hydrolysate rich in 12 essential and non-essential amino acids, totaling 18,298.14 μg/g biomass. GC-MS analysis revealed four potential novel components not previously reported in microbial filtrates or plants and seven components exclusive to plant sources but not reported in microbial filtrates. The hydrolysate contained phenolic, flavonoid, and tannin compounds, as confirmed by FT-IR analysis. High-resolution transmission electron microscopy depicted structures resembling amino acid micelles and potential protein aggregates. The hydrolysate exhibited antioxidant, antibacterial, and anticancer properties and innovatively induced apoptotic modulation in the MCF7 cancer cell line. These findings underscore the potential of ANN-optimized fermentation for various applications, particularly in anticancer medicine due to its unique composition and bioactivities. The integration of the DSD and ANNs presents a novel technique for biomass biodegradation, warranting the valorization of plant biomass and suggesting a further exploration of the new components in the fungal hydrolysate. This approach represents the basic concept for exploring other biomass sources and in vivo studies.

Funder

The Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3