Batch Fermentation of Salt-Acclimatizing Microalga for Omega-3 Docosahexaenoic Acid Production Using Biodiesel-Derived Crude Glycerol Waste as a Low-Cost Substrate

Author:

Tanamool Varavut1ORCID,Enmak Prayoon2,Kaewkannetra Pakawadee3

Affiliation:

1. Chemistry Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand

2. School of Chemical Engineering and Advanced Materials, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, UK

3. Department of Biotechnology, Faculty of Technology, Khon Kaen Univerisity, Khon Kaen 40002, Thailand

Abstract

Biodiesel produced from waste cooking oil (WCO) is on the rise and inevitably leads to issues in managing glycerol waste. Due to the presence of colour, odour and other minor compounds, the refining costs for this type of glycerol are higher and uneconomical. The potential of biodiesel-derived glycerol waste (BDGW) obtained from WCO to produce the highly added product of docosahexaenoic acid (DHA), also known as omega-3 polyunsaturated fatty acid, via the marine microalga of Schizochytrium limacinum ATCC MYA-1381 under aerobic batch fermentation was investigated. Cell growth, as well as DHA production, were performed under various operating conditions, including aeration rates and BDGW concentrations. The effect of the substrate type on cell growth and DHA yield was evaluated. The optimum operating condition was obtained when the air flow of a 0.25 vvm and 50 g/L of the glycerol concentration was fed into the fermenter and maximum cell dry weight (11.40 g/L) and DHA yield (665.52 mg/g) were achieved. However, cell growth and DHA yield were not significantly different when S. limacinum was grown using various carbon sources. Successfully, it clearly demonstrates that the BDGW can be used as a cheap carbon source for DHA production via marine microalgae using aerobic batch fermentation.

Funder

Khon Kaen University

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3