Response-Surface Statistical Optimization of Submerged Fermentation for Pectinase and Cellulase Production by Mucor circinelloides and M. hiemalis

Author:

Al Mousa Amal A.,Hassane Abdallah M. A.ORCID,Gomaa Abd El-Rahman F.ORCID,Aljuriss Jana A.ORCID,Dahmash Noura D.,Abo-Dahab Nageh F.ORCID

Abstract

Cellulase and pectinase are degrading cellulosic and pectic substances that form plant cell walls and, thereby, they have a wide range of applications in the agro-industrial by-products recycling and food industries. In the current research, Mucor circinelloides and M. hiemalis strains were tested for their ability to produce cellulase and pectinase from tangerine peel by submerged fermentation. Experiments on five variables: temperature, pH, incubation period, inoculum size, and substrate concentration, were designed with a Box–Behnken design, as well as response surface methodology (RSM), and analysis of variance was performed. In addition, cellulase and pectinase were partially purified and characterized. At their optimum parameters, M. circinelloides and M. hiemalis afforded high cellulase production (37.20 U/mL and 33.82 U/mL, respectively) and pectinase (38.02 U/mL and 39.76 U/mL, respectively). The partial purification of M. circinelloides and M. hiemalis cellulase produced 1.73- and 2.03-fold purification with 31.12 and 32.02% recovery, respectively; meanwhile, 1.74- and 1.99-fold purification with 31.26 and 31.51% recovery, respectively, were obtained for pectinase. Partially purified cellulase and pectinase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH, and 70 and 50 °C, for cellulase and 50 and 60 °C, for pectinase, respectively. Moreover, 10 mM of K+ increased M. circinelloides enzymatic activity. The production of cellulase and pectinase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of agro-industrial wastes.

Funder

Research Assistant Internship Program

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3