Effects of Total Solid Content on Anaerobic Fermentation Performance and Biogas Productivity of Tail Vegetables

Author:

Yao Li1,Wang Yanqin1,Li Ran1,Fu Longyun1,Liu Zhaodong1,Gao Xinhao1

Affiliation:

1. State Key Laboratory of Nutrient Use and Management, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China

Abstract

A large amount of vegetable waste generated by farms is currently damaging the environment and public health. Anaerobic fermentation is a mature technology that significantly contributes to the recovery of energy and resources from tail vegetables and the control of environmental pollution. However, most vegetable wastes have not been utilized due to poor performance of biogas production, lack of optimal solid contents, and multiple other reasons. Herein, the anaerobic digestion biogas production performance of tail vegetables treated with different total solid (TS) content was studied using solanaceous and leafy vegetables as raw materials. Results showed that there was no acidification in all trials except for treatment with TS of 6%. The optimal TS for anaerobic fermentation of vegetable waste was determined to be around 20% in terms of methane production and biogas production efficiency. The cumulative methane production per unit of volatile solids (VSs) reached 241.7 mL CH4/g of VS, and the methane content was about 65% during the peak period of biogas production. Theoretically, the value of methane production based on anaerobic fermentation of tail vegetables is as high as 1.8 × 1013~4.6 × 1013 L in China. This research provides advice for screening specific and efficient parameters to promote the biogas production rate by tail vegetable anaerobic fermentation.

Funder

Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences

Key R&D Program of Shandong Province, China

Modern Agro-industry Technology Research System of Shandong Province-Edible Fungi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3