Characterization of the Key Aroma Compounds of Soybean Flavor in Fermented Soybeans with Bacillus subtilis BJ3-2 by Gene Knockout, Gas Chromatography–Olfactometry–Mass Spectrometry, and Aroma Addition Experiments

Author:

Chen Zhaofeng1,Wu Yongjun1,Tong Shuoqiu1,Jin Jing1ORCID,Zhang Lincheng1ORCID,Li Chen1,Tan Qibo1,Wen Feng1,Tao Yi1

Affiliation:

1. Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China

Abstract

Soybean flavor is considered to be essential for the aroma quality of fermented soybeans (FS) with Bacillus subtilis BJ3-2 (BJ3-2) at 37 °C. However, the key aroma compounds of the soybean flavor must be further elucidated. In this study, two candidate genes (sdaAA and katX) of BJ3-2 involved in the control of soybean flavor production were screened using prior multi-omics data. FS samples with BJ3-2, BJ3-2ΔsdaAA, BJ3-2ΔkatX, and BJ3-2ΔsdaAAΔkatX were analyzed by quantitative descriptive sensory analysis (QDA), gas chromatography–olfactometry–mass spectrometry (GC-O-MS), relative odor activity values (ROAV), and aroma addition experiments. The QDA revealed that the aroma profile of the soybean flavor in FS consisted of “sweaty”, “smoky”, “beany”, “roasted”, and “sweet” attributes. A total of 20 aroma-active compounds were detected, and 13 of them with ROAV > 1 were identified as key aroma compounds. Moreover, aroma addition experiments were conducted to further confirm the key aroma compounds of soybean flavor. Among them, 2-methylbutyric acid, 2,3,5-trimethylpyrazine, and guaiacol contributed higher aroma intensity values and ROAV, resulting in “sweaty”, “roasted”, and “smoky” attributes of soybean flavor in FS, respectively, while 1-octen-3-ol was associated with the “beany” attribute. These findings provide novel insights into the aroma attributes of soybean flavor in FS and a new strategy for revealing the key aroma compounds in fermented foods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3