The Hard Reality of Biogas Production through the Anaerobic Digestion of Algae Grown in Dairy Farm Effluents

Author:

Hull-Cantillo Marianne1,Lay Mark1ORCID,Glasgow Graeme1ORCID,Kovalsky Peter1ORCID

Affiliation:

1. School of Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

Abstract

Much emphasis has been given to algal biomass growth in dairy farm wastewater. Most of the systems examined require productive land to be converted and/or freshwater use to dilute high concentrations of nutrients found in dairy effluent. A rotating algal biofilm (RABR) provides the capacity to grow algae without sacrificing productive land or freshwater. In theory, this system would overcome some of the economic and environmental challenges that other systems have. A combination of theoretical information, nutrient uptake formulas, and economic formulas were used to calculate the potential of biogas production from algae grown in an RABR with dairy effluents. The average nutrient uptake was 0.8 mgN/m2 per day and 0.1 mgP/m2 per day. The maximum methane production from the anaerobic digestion of algae was 112 m3/RABR·year. The minimum and maximum economic scenarios resulted in gross profits of NZD −2101 and −1922. After evaluating this system for the first time in the New Zealand dairy farming context, it was found that biogas production from an RABR is not a feasible option for New Zealand dairy farmers.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3