Effects of Four Critical Gene Deletions in Saccharomyces cerevisiae on Fusel Alcohols during Red Wine Fermentation

Author:

Yan Tongshuai1ORCID,Wang Zexiang1,Zhou Haoyang2,He Jiaojiao1,Zhou Shishui1

Affiliation:

1. School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China

2. College of Food Science, South China Agricultural University, Guangzhou 510642, China

Abstract

Excessive fusel alcohols in red wine will bring an uncomfortable bitterness and generate an intoxicating effect, which affects the quality and attractivity of the red wine. In order to achieve better regulation of fusel alcohols in red wine, strains with LEU1 and PDC5 deletions were constructed, and seven engineered yeast strains based on THI3 and BAT2 deletions were applied to red wine fermentation to dissect the effects of four critical genes on fusel alcohols during wine fermentation. The fermentation results of these recombinant strains showed that the deletion of THI3 increased the contents of n-propanol, isobutanol, and isoamyl alcohol by 48.46%, 42.01%, and 7.84%, respectively; the deletion of BAT2 decreased isoamyl alcohol and isobutanol by 32.81% and 44.91%; the deletion of PDC5 and LEU1 decreased isoamyl alcohol by 40.21% and 68.28%, while increased isobutanol by 24.31% and 142%, respectively; the deletion of THI3 exerted a negative influence on the reduction of isoamyl alcohol caused by BAT2 or PDC5 deletion; the deletion of THI3 and PDC5 had a synergistic effect on the increase of isobutanol, while BAT2 and PDC5 deletion presented no additive property to the decrease of isoamyl alcohol. Hence, it is concluded that either BAT2, PDC5, or LEU1 deletion can effectively decrease fusel alcohols, especially isoamyl alcohol, which provides an important reference for the control of fusel alcohols in red wine.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3