Affiliation:
1. School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
2. College of Food Science, South China Agricultural University, Guangzhou 510642, China
Abstract
Excessive fusel alcohols in red wine will bring an uncomfortable bitterness and generate an intoxicating effect, which affects the quality and attractivity of the red wine. In order to achieve better regulation of fusel alcohols in red wine, strains with LEU1 and PDC5 deletions were constructed, and seven engineered yeast strains based on THI3 and BAT2 deletions were applied to red wine fermentation to dissect the effects of four critical genes on fusel alcohols during wine fermentation. The fermentation results of these recombinant strains showed that the deletion of THI3 increased the contents of n-propanol, isobutanol, and isoamyl alcohol by 48.46%, 42.01%, and 7.84%, respectively; the deletion of BAT2 decreased isoamyl alcohol and isobutanol by 32.81% and 44.91%; the deletion of PDC5 and LEU1 decreased isoamyl alcohol by 40.21% and 68.28%, while increased isobutanol by 24.31% and 142%, respectively; the deletion of THI3 exerted a negative influence on the reduction of isoamyl alcohol caused by BAT2 or PDC5 deletion; the deletion of THI3 and PDC5 had a synergistic effect on the increase of isobutanol, while BAT2 and PDC5 deletion presented no additive property to the decrease of isoamyl alcohol. Hence, it is concluded that either BAT2, PDC5, or LEU1 deletion can effectively decrease fusel alcohols, especially isoamyl alcohol, which provides an important reference for the control of fusel alcohols in red wine.
Funder
National Natural Science Foundation of China
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Reference39 articles.
1. Wine and health perceptions: Exploring the impact of gender, age and ethnicity on consumer perceptions of wine and health;Chang;Wine Econ. Policy,2016
2. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2;Ma;J. Agric. Food Chem.,2017
3. Major constituents of fusel oils distilled from Australian grape wines;Connell;J. Sci. Food Agric.,1974
4. Xie, J., Tian, X., He, S., Wei, Y., Peng, B., and Wu, Z. (2018). Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters. Molecules, 23.
5. Effect of activated carbon on bitterness substances of litchi spirit;Zhao;Sci. Technol. Food Ind.,2012
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献