Roles of Process Parameters on the Ricinoleic Acid Production from Castor Oil by Aspergillus flavus BU22S

Author:

Singh Shikha1,Sharma Sumit1,Sarma Saurabh Jyoti1ORCID,Brar Satinder Kaur2

Affiliation:

1. Department of Biotechnology, Bennett University, Greater Noida 201310, India

2. Lassonde School of Engineering, York University, North York, Toronto, ON M3J1P3, Canada

Abstract

Ricinoleic acid is a biobased green chemical industrially produced from castor oil. Microbial conversion is a cleaner and greener approach to ricinoleic acid production from castor oil. These processes should be further optimized for a better yield of the product. Aspergillus flavus BU22S was used to convert castor oil into ricinoleic acid. The strain was isolated and identified by molecular biological techniques. It was found to be effective in the biotransformation of castor oil. The ricinoleic acid production and dry cell weight of the fungus were studied as functions of time. In this study, to increase the yield of ricinoleic acid and decrease the oil loss, which microorganisms utilizes in biomass production, response surface methodology (RSM) has been used for process optimization. The central composite design was used to optimize the predictor variables such as oil concentration (% w/v), glucose concentration (% w/v), and calcium chloride concentration (% w/v) to increase the overall yield of ricinoleic acid. A quadratic model was found to be the best fit to predict the responses of the experimental results. The model suggested that the concentrations of oil, glucose, and calcium chloride should be lower in order to increase the ricinoleic acid yield and minimize the oil loss. The bench scale studies of optimized conditions from RSM were also conducted. The yield of ricinoleic acid in batch and fed-batch culture studies was also compared. The yield of the ricinoleic acid in batch culture was 21.67 g/kg of total oil. The yield of ricinoleic acid in fed-batch culture in the absence of an external air supply was 46.77 g/kg of total oil. In this case, the oil loss was also reduced to only 12%.

Funder

Bennett University

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3