Assessing the Impact of Commercial Lachancea thermotolerans Immobilized in Biocapsules on Wine Quality: Odor Active Compounds and Organoleptic Properties

Author:

Muñoz-Castells Raquel1ORCID,Moreno Juan1ORCID,García-Martínez Teresa1ORCID,Mauricio Juan Carlos1ORCID,Moreno-García Jaime1ORCID

Affiliation:

1. Department of Agricultural Chemistry, Edaphology and Microbiology, Marie Curie (C3) and Severo Ochoa (C6) Buildings, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Córdoba, Spain

Abstract

As a result of climate change, the phenology of grapes has been altered, mainly by increasing the sugar content and decreasing the acidity of ripe grapes. This shift, when the must is fermented, affects the quality of the wine. In this regard, the use of selected Saccharomyces and non-Saccharomyces yeasts to mitigate these undesirable effects in wine fermentations entails new strategies to improve their control and also to obtain wines better adapted to current consumer preferences. This work focuses on the use of a commercially available strain of Lachancea thermotolerans immobilized in biological support to form “microbial biocapsules”, comparing its effect with a free format and spontaneous fermentation on alcoholic fermentation and volatile compound composition. These biocapsules, consisting of yeast cells attached to fungal pellets, are being tested to improve wine sensory attributes and also to facilitate yeast inoculation in fermentative and clarification winemaking processes, as well as to reduce time and production costs. The composition of young wines obtained with L. thermotolerans, inoculated as free or biocapsule formats, were compared with those obtained by the traditional method of spontaneous fermentation using native yeast by quantifying 12 oenological variables and the contents in 12 major volatiles, 3 polyols, and 46 minor volatile compounds. The analytical data matrix underwent statistical analysis to compare and establish significant differences at p ≤ 0.05 level between the different wines obtained. Among the major volatiles and polyols, only ethyl acetate, 1,1-diethoxyethane, methanol, 2-methyl-1-butanol, acetoin, ethyl lactate, and glycerol showed significant differences in L. thermotolerans wines. Also, from the minor volatile metabolites, eight showed a significant dependence on the format used for L. thermotolerans, and the other nine volatiles were dependent on both yeast and inoculation format. Only 27 volatiles were selected as aroma-active compounds with odor activity values higher than 0.2 units. Statistical analysis showed a clear separation of the obtained wines into groups when subjected to Principal Component Analysis, and the fingerprinting of wines made with biocapsules shows intermediate values between the two remaining inoculation formats, particularly in the fruity/ripe fruit, green, and floral series. The organoleptic evaluation of wines results in significantly higher values in taste, overall quality, and total score for wines obtained with biocapsules.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3