Abstract
The growing demand for natural products benefits the development of bioprocesses to obtain value-added compounds using residues such as sweet whey, which is rich in lactose. The yeast Kluyveromyces marxianus can ferment sweet whey to obtain 2-phenylethanol (2-PhEtOH), which is a superior alcohol with a rose aroma. Such fermentation only requires the addition of L-phenylalanine (precursor) and (NH4)2SO4 (salt). Therefore, it was sought to improve the fermentation conditions to produce 2-PhEtOH, which, in turn, would achieve the maximum decrease in the Chemical Oxygen Demand (COD) of the fermentation medium. With the use of the Response Surface Methodology and the application of a Central Composite Design for optimization, two parameters were evaluated as a function of time: salt concentration and precursor. The experimental data were adjusted to a second order polynomial, identifying that the precursor concentration presents a statistically significant effect. The best conditions were: 4.50 g/L of precursor and 0.76 g/L of salt, with a maximum production of 1.2 g/L (2-PhEtOH) at 48 h and achieving a maximum percentage of COD removal of 76% at 96 h. Finally, the optimal conditions were experimentally validated, recommending the use of the model.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Reference32 articles.
1. Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm
2. Bioethanol production from agricultural wastes: An overview
3. Production of 2-phenylethanol by microbial mixed cultures allows resource recovery of cane molasses wastewater;Mu;Fresen Environ. Bull.,2014
4. Production of food aroma compounds: Microbial and enzymatic methodologies;Longo;Food Technol. Biotechnol.,2006
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献