Development of a Culture Medium for Microalgae Production Based on Minimal Processing of Oil Palm Biomass Ash

Author:

Tessari Lorenzo Ferrari Assú,Soccol Carlos Ricardo,Rodrigues Cristine,González Estefania García,Tanobe Valcineide Oliveira de Andrade,Kirnev Paulo Cesar de Souza,de Carvalho Júlio CesarORCID

Abstract

With the increasing participation of biomass in the world energy matrix, large amounts of ash are produced through combustion, resulting in the need to dispose of this waste to minimize the environmental impact. An alternative is to use ashes as phosphorus supplements in microalgae cultures. The present work describes the development and use of a balanced culture medium based on the minimal processing of oil palm biomass ash to cultivate Arthrospira platensis Paracas, Neochloris oleoabundans UTEX 1185, and Dunaliella salina SAG 184. The acid extraction process of phosphorus (P) was defined by evaluating the following parameters: temperature (20 to 70 °C), acid load (0.01 to 0.03 mols/g of ash) of HNO3, and liquid/solid ratio (50 to 150 mLg−1). The best efficiency of the extraction process was 97%. The use of HNO3 allowed for the production of an extract containing balanced amounts of N and P sources, the BAX medium (Biomass Ash Extract). This medium was efficient for cultivating the three microorganisms studied, reaching biomass concentrations of 2.03, 0.902, and 0.69 g/L or 84%, 82%, and 99% of the control concentrations for A. platensis, N. Oleoabundans, and D. salina, respectively. In a final scaling-up test, A. platensis showed productivity of 0.047 g L−1d−1 in a 120 L tank in a greenhouse. BAX can be an alternative nutrient medium for microalgae cultivation, especially in integration with biomass-fueled biorefineries.

Funder

National Council for Scientific and Technological Development

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference61 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3