Optimization of Fermentation Conditions for Biocatalytic Conversion of Decanoic Acid to Trans-2-Decenoic Acid

Author:

Nie Shihao12,Liu Keyi12,Liu Ben12,Li Piwu12,Su Jing12

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China

2. School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China

Abstract

Trans-2-decenoic acid has a wide range of applications, including those in medicine, food, and health care. Therefore, the industrial production of trans-2-decenoic acid is particularly important. However, few studies have focused on medium-chain unsaturated fatty acids. Therefore, we aimed to optimize the fermentation process of decanoic acid biocatalysis to synthesize trans-2-decenoic acid using an engineered Escherichia coli constructed in the laboratory. Early-stage culture and the effect of the seed liquid culture time, culture temperature, inoculum amount, induction temperature, dissolution effects of the substrate solvent, metal ions, and substrate loading on the titer of trans-2-decenoic acid were evaluated. Based on a single-factor experimental optimization, a Box–Behnken design (BBD) was used for response surface testing using the substrate feeding concentration, inducer concentration, and MnCl2 concentration as response variables and trans-2-decenoic acid production as the response value. The optimal fermentation process was as follows: Seed culture time of 20 h, culture temperature of 37 °C, inoculation amount of 1%, induction temperature of 30 °C, substrate flow of 0.15 g/L, inducer concentration of 5.60 g/L, and MnCl2 concentration of 0.10 mM. Under these conditions, the average production of trans-2-decenoic acid was 1.982 ± 0.110 g/L, which was 1.042 g/L higher than that obtained in the basic LB medium. Compared with that of the previous period, the titer of the trans-2-decenoic acid studied increased by 1.501 ± 0.110 g/L, providing a basis for further research on the fermentation process of the biocatalytic decanoic acid synthesis of trans-2-decenoic acid.

Funder

the Focuson Research and Development Plan in Shandong Province

The Science Foundation of Shandong Province

Qilu University of Technology

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3