Staphylococcal Protein A with Engineered Cysteine: Comparison of Monomeric Content as a Critical Quality Attribute during Intracellular and Extracellular Expression

Author:

Choudhury LipsaORCID,Shukla Esha,Jena Rajender,Yadav Vishwanath,Ahmad Aziz,Mishra Rajesh,Pandey GauravORCID

Abstract

Background: The introduction of engineered cysteine in staphylococcal protein A (SPA-cys) for site-specific conjugation results in a substantial amount of dimerized SPA due to spontaneous oxidation during its production, leading to inaccessibility and thus rendering it unusable. Monomers are usually recovered from dimers by using reducing agents before conjugation in subsequent steps. However, this leads to low conjugation efficiency and increases overall cost and production time. This study aims to systematically compare and quantify the monomeric and dimeric content of SPA when produced through intracellular and extracellular routes in E. coli. Methods: Purified SPAs with and without cysteine from both intracellular and extracellular processes are compared for their monomeric content and efficiency to conjugate on solid support matrix with and without an additional pre-step of reduction. Results: The monomeric form of SPA-cys, which is a desired key quality attribute, is less than 50% when produced extracellularly. SPA-cys produced through the intracellular production process has high monomeric content (≥85%) and shows higher binding to solid support. Conclusion: The study demonstrates that the intracellular route for production of SPA-cys should be the preferred method, and the release assays for SPA-cys products should include the amount of monomeric content as one of the quality attributes. The abundance of monomeric content enhances the site-specific conjugation efficiency and density of SPA on the resin matrix.

Funder

Biotechnology Industry Research Assistance Council

Guru Gobind Singh Indraprastha University

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3