In-House Extracted Soybean Protein Can Reduce the Enzyme Dosage in Biomass Saccharification

Author:

Simões Igor R.1,Brondi Mariana G.12ORCID,Farinas Cristiane S.12

Affiliation:

1. Embrapa Instrumentation, Rua XV de Novembro 1452, Sao Carlos 13560-970, SP, Brazil

2. Graduate Program of Chemical Engineering, Federal University of Sao Carlos, Rod. Washington Luiz km 235, Sao Carlos 13565-905, SP, Brazil

Abstract

Bioconversion of the complex carbohydrates present in lignocellulosic biomass into simple sugars, in order to obtain biofuels and bio-based products, is still limited by the low performance of the enzymatic saccharification reaction and the high cost of cellulolytic enzymes. Low-cost additives such as soybean protein can reduce the unproductive adsorption of cellulases onto lignin, increasing conversion rates and reducing enzyme losses. Here, investigation was made of the effects of different soybean protein fractions, extracted in-house, on the enzymatic saccharification of hydrothermally pretreated sugarcane bagasse. The glucose released during biomass saccharification increased by up to 76% in the presence of the in-house extracted soybean protein, compared to the control (without additive). A remarkable finding was that the technique allowed the enzyme loading to be decreased four-fold. The results suggested that the alkali-extracted proteins presented high surface hydrophobicity, which enhanced their interaction with lignin and reduced the unproductive binding of cellulases. Among the main soybean protein fractions, glycinin had the best effect in improving saccharification, which could have been due to its higher hydrophobicity. Hence, in-house extracted soybean proteins seem to be interesting alternative additives capable of increasing the lignocellulosic biomass conversion efficiency in future biorefineries.

Funder

National Council for Scientific and Technological Development

State of São Paulo Research Foundation

Coordination for the Improvement of Higher Education Personnel

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3