Influence of Long-Term Agar-Slant Preservation at 4 °C on the Recombinant Enzyme Activity of Engineered Yeast

Author:

Liang Xiao1,Gong Ting1,Chen Jing-Jing1,Chen Tian-Jiao1,Yang Jin-Ling1,Zhu Ping1ORCID

Affiliation:

1. State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China

Abstract

Strain preservation to maintain stable vitality and the recombinant enzyme activity plays a crucial role in industrial fermentation. A Pichia pastoris strain is routinely stored at −80 °C in a glycerol vial and activated on an antibiotic-containing YPD agar plate before being used for fermentation. Alternatively, the activated strain should be preserved in the agar slant at 2~4 °C (low-temperature storage) for a short period before use. To maximize the utilization of the low-temperature storage for fermentation, we evaluated this method by observing the capacity of both the vitality and the recombinant enzyme activity of the strain at different preservation durations. We found that engineered yeast could be preserved by low-temperature storage for at least 30 months without losing its vitality and biomass enzyme activity by the end of fermentation and could be directly used for the seed cultivation of fermentation, which is more time-saving than strain recovery from −80 °C in a glycerol vial. Moreover, the antibiotic added to the agar slant could be omitted if the heterologous gene was integrated into the host chromosome. Our approach may greatly elevate the production efficiency of the strain.

Funder

CAMS Innovation Fund for Medical Sciences

National Key Research and Development Program of China

PUMC Disciplinary Development of Synthetic Biology

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3