Understanding the Essential Metabolic Nodes in the Synthesis of 4-Acetylantroquinol B (4-AAQB) by Antrodia cinnamomea Using Transcriptomic Analysis

Author:

Jin Yuhan1,Liu Huan1ORCID,Ning Yuchen1,Tzeng Yew-Min2,Deng Li1,Wang Fang1

Affiliation:

1. Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. Department of Applied Science, National Taitung University, Taitung 95045, Taiwan

Abstract

4-Acetylantroquinol B (4-AAQB) is a ubiquinone that has been shown to have multiple anticancer activities and is only found in the rare medicinal fungus A. cinnamomea in Taiwan. The large-scale production and application of 4-AAQB is thus limited due to the high host specificity, long production cycle, and low 4-AAQB content of A. cinnamomea. Additionally, the lack of molecular genetic studies on A. cinnamomea has hindered the study of the synthetic pathway of 4-AAQB. In this work, transcriptomic analysis was conducted to understand the essential metabolic nodes in the synthesis of 4-AAQB by A. cinnamomea based on the differences using glucose and fructose as carbon sources, respectively. The results showed that the glyoxylate and TCA cycle, terpenoid synthesis pathway, and the quinone ring modification pathway were clarified as the most significant factors associated with 4-AAQB synthesis. The enzymes ACS, ACU7, ACUE, GPS, PPT, P450, GEDA, YAT1, CAT2, and METXA in these pathways were the essential metabolic nodes in the synthesis of 4-AAQB. When fructose was used as the substrate, the expressions of these enzymes were upregulated, and the synthesis of some important intermediate metabolites was enhanced, thus promoting the accumulation of 4-AAQB. Our work understood the mechanism of fructose promoting the synthesis of 4-AAQB and identified the essential metabolic nodes which could provide the theoretical basis for the development of fermentation strategies to produce 4-AAQB by A. cinnamomea.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3