Comprehensive Comparative Analyses of Aspidistra Chloroplast Genomes: Insights into Interspecific Plastid Diversity and Phylogeny

Author:

Huang Jie12,Lu Zhaocen1,Lin Chunrui1,Xu Weibin2,Liu Yan1

Affiliation:

1. Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China

2. Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China

Abstract

Limestone karsts are renowned for extremely high species richness and endemism. Aspidistra (Asparagaceae) is among the highly diversified genera distributed in karst areas, making it an ideal group for studying the evolutionary mechanisms of karst plants. The taxonomy and identification of Aspidistra species are mainly based on their specialized and diverse floral structures. Aspidistra plants have inconspicuous flowers, and the similarity in vegetative morphology often leads to difficulties in species discrimination. Chloroplast genomes possess variable genetic information and offer the potential for interspecies identification. However, as yet there is little information about the interspecific diversity and evolution of the plastid genomes of Aspidistra. In this study, we reported chloroplast (cp) genomes of seven Aspidistra species (A. crassifila, A. dolichanthera, A. erecta, A. longgangensis, A. minutiflora, A. nankunshanensis, and A. retusa). These seven highly-conserved plastid genomes all have a typical quartile structure and include a total of 113 unique genes, comprising 79 protein-coding genes, 4 rRNA genes and 30 tRNA genes. Additionally, we conducted a comprehensive comparative analysis of Aspidistra cp genomes. We identified eight divergent hotspot regions (trnC-GCA-petN, trnE-UUC-psbD, accD-psaI, petA-psbJ, rpl20-rps12, rpl36-rps8, ccsA-ndhD and rps15-ycf1) that serve as potential molecular markers. Our newly generated Aspidistra plastomes enrich the resources of plastid genomes of karst plants, and an investigation into the plastome diversity offers novel perspectives on the taxonomy, phylogeny and evolution of Aspidistra species.

Funder

Biological Resources Programme of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference65 articles.

1. Adaptive molecular evolution of the two-pore channel 1 gene TPC1 in the karst-adapted genus Primulina (Gesneriaceae);Tao;Ann. Bot.,2016

2. Speciation history of a species complex of Primulina eburnea (Gesneriaceae) from limestone karsts of southern China, a biodiversity hot spot;Wang;Evol. Appl.,2017

3. Comparative chloroplast genome analyses of Paraboea (Gesneriaceae): Insights into adaptive evolution and phylogenetic analysis;Wang;Front. Plant Sci.,2022

4. Phylogenetic analyses of Begonia sect. Coelocentrum and allied limestone species of China shed light on the evolution of Sino-Vietnamese karst flora;Chung;Bot. Stud.,2014

5. Qin, H., Liu, Y., Yu, S., Xu, W., and Hou, M. (2010). A Checklist of Vascular Plants of Guangxi, Science Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3