A Comprehensive Analysis of Vegetation Dynamics and Their Response to Climate Change in the Loess Plateau: Insight from Long-Term kernel Normalized Difference Vegetation Index Data

Author:

He Qingyan12,Yang Qianhua3,Jiang Shouzheng1,Zhan Cun1

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

2. Sichuan Academy of Agricultural Machinery Sciences, Chengdu 610066, China

3. School of Geographical Science, Nantong University, Nantong 650500, China

Abstract

The Loess Plateau (LP) is a typical climate-sensitive and ecologically delicate area in China. Clarifying the vegetation–climate interaction in the LP over 40+ years, particularly pre- and post-Grain to Green Program (GTGP) implementation, is crucial for addressing potential climate threats and achieving regional ecological sustainability. Utilizing the kernel Normalized Difference Vegetation Index (kNDVI) and key climatic variables (precipitation (PRE), air temperature (TEM), and solar radiation (SR)) between 1982 and 2022, we performed an extensive examination of vegetation patterns and their reaction to changes in climate using various statistical methods. Our findings highlight a considerable and widespread greening on the LP from 1982 to 2022, evidenced by a kNDVI slope of 0.0020 yr−1 (p < 0.001) and a 90.9% significantly increased greened area. The GTGP expedited this greening process, with the kNDVI slope increasing from 0.0009 yr−1 to 0.0036 yr−1 and the significantly greened area expanding from 39.1% to 84.0%. Over the past 40 years, the LP experienced significant warming (p < 0.001), slight humidification, and a marginal decrease in SR. Post-GTGP implementation, the warming rate decelerated, while PRE and SR growth rates slightly accelerated. Since the hurst index exceeded 0.5, most of the vegetated area of the LP is expected to be greening, warming, and humidification in the future. In the long term, 75% of the LP vegetated area significantly benefited from the increase in PRE, especially in relatively dry environments. In the LP, 61% of vegetated areas showed a positive correlation between kNDVI and TEM, while 4.9% exhibited a significant negative correlation, mainly in arid zones. SR promoted vegetation growth in 23% of the vegetated area, mostly in the eastern LP. The GTGP enhanced the sensitivity of vegetation to PRE, increasing the area corresponding to a significant positive correlation from 15.3% to 59.9%. Overall, PRE has emerged as the dominant climate driver for the vegetation dynamics of the LP, followed by TEM and SR. These insights contribute to a comprehensive understanding of the climate-impact-related vegetation response mechanisms, providing guidance for efforts toward regional sustainable ecological development amid the changing climate.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Sichuan Science and Technology Program

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3