Synthesis of PDMS-μ-PCL Miktoarm Star Copolymers by Combinations (Є) of Styrenics-Assisted Atom Transfer Radical Coupling and Ring-Opening Polymerization and Study of the Self-Assembled Nanostructures

Author:

Huang Yi-Shen1,Ejeta Dula Daksa1ORCID,Lin Kun-Yi (Andrew)2,Kuo Shiao-Wei3ORCID,Jamnongkan Tongsai4ORCID,Huang Chih-Feng1ORCID

Affiliation:

1. Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan

2. Department of Environmental Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan

3. Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

4. Department of Fundamental Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University, Chonburi 20230, Thailand

Abstract

Due to their diverse and unique physical properties, miktoarm star copolymers (μ-SCPs) have garnered significant attention. In our study, we employed α-monobomoisobutyryl-terminated polydimethylsiloxane (PDMS-Br) to carry out styrenics-assisted atom transfer radical coupling (SA ATRC) in the presence of 4-vinylbenzyl alcohol (VBA) at 0 °C. By achieving high coupling efficiency (χc = 0.95), we obtained mid-chain functionalized PDMS-VBAm-PDMS polymers with benzylic alcohols. Interestingly, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis revealed the insertion of only two VBA coupling agents (m = 2). Subsequently, the PDMS-VBA2-PDMS products underwent mid-chain extensions using ε-caprolactone (ε-CL) through ring-opening polymerization (ROP) with an efficient organo-catalyst at 40 °C, resulting in the synthesis of novel (PDMS)2-μ-(PCL)2 μ-SCPs. Eventually, novel (PDMS)2-μ-(PCL)2 μ-SCPs were obtained. The obtained PDMS-μ-PCL μ-SCPs were further subjected to examination of their solid-state self-assembly through small-angle X-ray scattering (SAXS) experiments. Notably, various nanostructures, including lamellae and hexagonally packed cylinders, were observed with a periodic size of approximately 15 nm. As a result, we successfully developed a simple and effective reaction combination (Є) strategy (i.e., SA ATRC-Є-ROP) for the synthesis of well-defined PDMS-μ-PCL μ-SCPs. This approach may open up new possibilities for fabricating nanostructures from siloxane-based materials.

Funder

National Science and Technology Council

Kasetsart University and National Chung Hsing University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3