Non-Invasive Electroretinogram Recording with Simultaneous Optogenetics to Dissect Retinal Ganglion Cells Electrophysiological Dynamics

Author:

Hong Eunji,Glynn Christopher,Wang QianbinORCID,Rao SiyuanORCID

Abstract

Electroretinography (ERG) is a non-invasive electrophysiological recording technique that detects the electrical signaling of neuronal cells in the visual system. In conventional ERG recordings, the signals are considered a collective electrical response from various neuronal cell populations, including rods, cones, bipolar cells, and retinal ganglion cells (RGCs). However, due to the limited ability to control electrophysiological responses from different types of cells, the detailed information underlying ERG signals has not been analyzed and interpreted. Linking the features of ERG signals to the specific neuronal response will advance the understanding of neuronal electrophysiological dynamics and provide more evidence to elucidate pathological mechanisms, such as RGC loss during the progression of glaucoma. Herein, we developed an advanced ERG recording system integrated with a programmable, non-invasive optogenetic stimulation method in mice. In this system, we applied an automatic and unbiased ERG data analysis approach to differentiate a, b wave, negative response, and oscillatory potentials. To differentiate the electrophysiological response of RGCs in ERG recordings, we sensitized mouse RGCs with red-light opsin, ChRmine, through adeno-associated virus (AAV) intravitreal injection. Features of RGC dynamics under red-light stimulation were identified in the ERG readout. This non-invasive ERG recording system, associated with the programmable optogenetics stimulation method, provides a new methodology to dissect neural dynamics under variable physiological and pathological conditions in vivo. With the merits of non-invasiveness, improved sensitivity, and specificity, we envision this system can be further applied for early-stage detection of RGC degeneration and functional progression in neural degenerative diseases, such as glaucoma.

Funder

UMass Amherst Faculty Startup

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference29 articles.

1. Open-angle glaucoma;Quigley;N. Engl. J. Med.,1993

2. Optic Nerve Damage in Human Glaucoma: II. The Site of Injury and Susceptibility to Damage;Quigley;Arch. Ophthalmol.,1981

3. Strategies to improve early diagnosis in glaucoma;Tatham;Prog. Brain Res.,2015

4. Gradual Painless Visual Loss: Glaucoma;Kendrick;Clin. Geriatr. Med.,1999

5. Diagnostic Tools for Glaucoma Detection and Management;Sharma;Surv. Ophthalmol.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3