Improvement of Seed-Mediated Growth of Gold Nanoparticle Labels for DNA Membrane-Based Assays

Author:

Presnova Galina V.,Zhdanov Gleb A.ORCID,Filatova Luibov Yu.,Ulyashova Mariya M.,Presnov Denis E.ORCID,Rubtsova Maya Yu.ORCID

Abstract

Gold nanoparticles (AuNPs) are popular labels for colorimetric detection of various analytes, involving proteins, nucleic acids, viruses, and whole cells because of their outstanding optical properties, inertness, and modification variability. In this work, we present an improved approach for enhancement of color intensity for DNA membrane microarrays based on seed-mediated growth of AuNP labels. Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microarrays. Then biotin is revealed by a streptavidin–AuNP conjugate followed by the detection of AuNPs. Optimization of seed-mediated enlargement of AuNPs by the reduction of tetrachloroauric acid with hydroxylamine made it possible to change the coloring of specific spots on the microarrays from pink to a more contrasting black with minor background staining. Mean size of the resulting AuNPs was four times larger than before the enhancement. Adjusting the pH of HAuCl4 solution to 3.5 and use of a large excess of hydroxylamine increased the signal/background ratio by several times. The method’s applicability was demonstrated for quantification of a short oligonucleotide of 19 bases and full-length TEM-type β-lactamase genes of 860 bp responsible for the development of bacterial resistance against β-lactam antibiotics. Improved protocol for AuNP enlargement may be further transferred to any other membrane-based assays of nucleic acids with both instrumental and visual colorimetric detection.

Funder

Interdisciplinary Scientific and Educational School of Moscow State University “Photonic and Quantum Technologies. Digital Medicine” and by M.V. Lomonosov Moscow State University state task

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3