Nanorod-like Structure of ZnO Nanoparticles and Zn8O8 Clusters Using 4-Dimethylamino Benzaldehyde Liquid to Study the Physicochemical and Antimicrobial Properties of Pathogenic Bacteria

Author:

Ramesh Sivalingam,Karthikeyan C.,Hajahameed A. S.ORCID,Afsar N.,Sivasamy Arumugam,Lee Young-Jun,Kim Joo-Hyung,Kim Heung SooORCID

Abstract

To study their physicochemical and antimicrobial properties, zinc oxide nanoparticles were synthesized using a simple chemical route and 4-dimethylaminobenzaldehyde (4DB) as an organic additive. ZnO nanoparticles were characterized with XRD analysis, which confirmed the presence of a hexagonal wurtzite structure with different crystalline sizes. The SEM morphology of the synthesized nanoparticles confirmed the presence of nanorods in both modifications of ZnO nanoparticles. EDS analysis proved the chemical composition of the synthesized samples via different chemical approaches. In addition, the optical absorption results indicated that the use of 4DB increased the band gap energy of the synthesized nanoparticles. The synthesized Zn8O8 and Zn8O8:4DB clusters were subjected to HOMO–LUMO analysis, and their ionization energy (I), electron affinity (A), global hardness (η), chemical potential (σ), global electrophilicity index (ω), dipole moment (μ), polarizability (αtot), first-order hyperpolarizability (βtot), and other thermodynamic properties were determined. Furthermore, the antimicrobial properties of the ZnO nanoparticles were studied against G+ (S. aureus and B. subtilis) and G− (K. pneumoniae and E. coli) bacteria in a nutrient agar according to guidelines of the Clinical and Laboratory Standards Institute (CLSI).

Funder

Korea Government

Defense Acquisition Program Administration and Ministry of Trade, Industry and Energy the Korean Government

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3