Abstract
In this study, modeling of optimized lattice mismatch by carbon-dioxide annealing on (In, Ga) co-doped ZnO multi-deposition thin films was investigated with crystallography and optical analysis. (In, Ga) co-doped ZnO multi-deposition thin films with various types of bottom layers were fabricated on sapphire substrates by solution synthesis, the spin coating process, and carbon-dioxide laser irradiation with post annealing. (In, Ga) co-doped ZnO multi-deposition thin films with Ga-doped ZnO as the bottom layer showed the lowest mismatch ratio between the substrate and the bottom layer of the film. The carbon-dioxide laser annealing process can improve electrical properties by reducing lattice mismatch. After applying the carbon-dioxide laser annealing process to the (In, Ga) co-doped ZnO multi-deposition thin films with Ga-doped ZnO as the bottom layer, an optimized sheet resistance of 34.5 kΩ/sq and a high transparency rate of nearly 90% in the visible light wavelength region were obtained.
Funder
Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea
Human Resources Development
Korea government Ministry of Trade, Industry and Energy
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献