A Biocompatible Ultrananocrystalline Diamond (UNCD) Coating for a New Generation of Dental Implants

Author:

Auciello Orlando,Renou SandraORCID,Kang Karam,Tasat DeborahORCID,Olmedo DanielORCID

Abstract

Implant therapy using osseointegratable titanium (Ti) dental implants has revolutionized clinical dental practice and has shown a high rate of success. However, because a metallic implant is in contact with body tissues and fluids in vivo, ions/particles can be released into the biological milieu as a result of corrosion or biotribocorrosion. Ultrananocrystalline diamond (UNCD) coatings possess a synergistic combination of mechanical, tribological, and chemical properties, which makes UNCD highly biocompatible. In addition, because the UNCD coating is made of carbon (C), a component of human DNA, cells, and molecules, it is potentially a highly biocompatible coating for medical implant devices. The aim of the present research was to evaluate tissue response to UNCD-coated titanium micro-implants using a murine model designed to evaluate biocompatibility. Non-coated (n = 10) and UNCD-coated (n = 10) orthodontic Ti micro-implants were placed in the hematopoietic bone marrow of the tibia of male Wistar rats. The animals were euthanized 30 days post implantation. The tibiae were resected, and ground histologic sections were obtained and stained with toluidine blue. Histologically, both groups showed lamellar bone tissue in contact with the implants (osseointegration). No inflammatory or multinucleated giant cells were observed. Histomorphometric evaluation showed no statistically significant differences in the percentage of BIC between groups (C: 53.40 ± 13% vs. UNCD: 58.82 ± 9%, p > 0.05). UNCD showed good biocompatibility properties. Although the percentage of BIC (osseointegration) was similar in UNCD-coated and control Ti micro-implants, the documented tribological properties of UNCD make it a superior implant coating material. Given the current surge in the use of nano-coatings, nanofilms, and nanostructured surfaces to enhance the biocompatibility of biomedical implants, the results of the present study contribute valuable data for the manufacture of UNCD coatings as a new generation of superior dental implants.

Funder

University of Buenos Aires

School of Dentistry of the University of Buenos Aires

University of Texas at Dallas

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3