Effects of Prescribed Burning on Soil CO2 Emissions from Pinus yunnanensis Forestland in Central Yunnan, China

Author:

Yang Bo,Chen Qibo,Gong Shunqing,Zhao Yue,Song Denghui,Li Jianqiang

Abstract

The effects of low-intensity and high-frequency prescribed burning on the soil CO2 emissions from Pinus yunnanensis forestland should be explored to achieve sustainable operation and management under fire disturbance. A Li-6400XT portable photosynthesis meter (equipped with a Li-6400-09 soil respiration chamber) and a TRIME®-PICO 64/32 soil temperature and moisture meter were used to measure the soil CO2 flux, soil temperature, and soil moisture at fixed observation sites in two treatments (i.e., unburned (UB) and after prescribed burning (AB)) in a Pinus yunnanensis forest of Zhaobi Mountain, Xinping County, Yunnan, China from March 2019 to February 2021. We also determined the relationships between the soil CO2 flux and soil hydrothermal factors. The results showed that (1) the soil CO2 flux in both UB and AB plots exhibited a significant unimodal trend of seasonal variations. In 2020, the highest soil CO2 fluxes occurred in September; they were 7.08 μmol CO2·m−2·s−1 in the morning and 7.63 μmol CO2·m−2·s−1 in the afternoon in the AB treatment, which was significantly lower than those in the UB treatment (p < 0.05). The AB and the UB treatment showed no significant differences in annual soil carbon flux (p > 0.05). (2) The relationship between the soil CO2 flux and moisture in the AB and UB plots was best fitted by a quadratic function, with a degree of fitting between 0.435 and 0.753. The soil CO2 flux and soil moisture showed an inverted U-shaped correlation in the UB plot (p < 0.05) but a positive correlation in the AB plot (p < 0.05). Soil moisture was the key factor affecting the soil CO2 flux (p < 0.05), while soil temperature showed no significant effect on soil CO2 flux in this area (p > 0.05). Therefore, the application of low-intensity prescribed burning for fire hazard reduction in this region achieved the objective without causing a persistent and drastic increase in the soil CO2 emissions. The results could provide important theoretical support for scientific implementation of prescribed burning, as well as scientific evaluation of ecological and environmental effects after prescribed burning.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3