Prediction of Endocrine-Disrupting Chemicals Related to Estrogen, Androgen, and Thyroid Hormone (EAT) Modalities Using Transcriptomics Data and Machine Learning

Author:

Ollitrault Guillaume1ORCID,Marzo Marco2,Roncaglioni Alessandra2,Benfenati Emilio2,Mombelli Enrico3,Taboureau Olivier1ORCID

Affiliation:

1. Inserm U1133, CNRS UMR 8251, Université Paris Cité, 75013 Paris, France

2. Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy

3. Institut National de l’Environnement Industriel et des Risques (INERIS), 60550 Verneuil en Halatte, France

Abstract

Endocrine-disrupting chemicals (EDCs) are chemicals that can interfere with homeostatic processes. They are a major concern for public health, and they can cause adverse long-term effects such as cancer, intellectual impairment, obesity, diabetes, and male infertility. The endocrine system is a complex machinery, with the estrogen (E), androgen (A), and thyroid hormone (T) modes of action being of major importance. In this context, the availability of in silico models for the rapid detection of hazardous chemicals is an effective contribution to toxicological assessments. We developed Qualitative Gene expression Activity Relationship (QGexAR) models to predict the propensities of chemically induced disruption of EAT modalities. We gathered gene expression profiles from the LINCS database tested on two cell lines, i.e., MCF7 (breast cancer) and A549 (adenocarcinomic human alveolar basal epithelial). We optimized our prediction protocol by testing different feature selection methods and classification algorithms, including CATBoost, XGBoost, Random Forest, SVM, Logistic regression, AutoKeras, TPOT, and deep learning models. For each EAT endpoint, the final prediction was made according to a consensus prediction as a function of the best model obtained for each cell line. With the available data, we were able to develop a predictive model for estrogen receptor and androgen receptor binding and thyroid hormone receptor antagonistic effects with a consensus balanced accuracy on a validation set ranging from 0.725 to 0.840. The importance of each predictive feature was further assessed to identify known genes and suggest new genes potentially involved in the mechanisms of action of EAT perturbation.

Funder

French National Research Program for Environmental and Occupational Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3