Causal Relationships between Air Pollutant Exposure and Bone Mineral Density and the Risk of Bone Fractures: Evidence from a Two-Stage Mendelian Randomization Analysis

Author:

Hu Xiao12,Zhao Yan23,He Tian23,Gao Zhao-Xing23,Zhang Peng23,Fang Yang23,Ge Man23,Xu Yi-Qing23,Pan Hai-Feng23ORCID,Wang Peng12ORCID

Affiliation:

1. Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China

2. Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China

3. Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China

Abstract

A number of studies from the literature have suggested that exposure to air pollutants is associated with a declined bone mineral density (BMD), and increased risks of osteoporosis (OP) and bone fractures. This study was performed to systemically assess the genetically causal associations of air pollutants with site-/age-specific BMD and risk of bone fractures with the implementation of two-sample Mendelian randomization (TSMR) and multivariate Mendelian randomization (MVMR). The TSMR analysis was implemented to infer the causal associations between air pollutants and BMD and the risk of bone fractures, additional MVMR analysis was used to further estimate the direct causal effects between air pollutants and BMD, the occurrence of OP, and bone fractures. The results showed that NOx exposure contributed to lower femoral neck BMD (FN-BMD) (β = −0.71, 95%CI: −1.22, −0.20, p = 0.006) and total body BMD (TB-BMD) (β = −0.55, 95%CI: −0.90, −0.21, p = 0.002). Additionally, exposure to PM10 was found to be associated with a decreased TB-BMD (B β = −0.42, 95%CI: −0.66, −0.18, p = 0.001), further age-specific subgroup analysis demonstrated the causal effect of PM10 exposure on the decreased TB-BMD in a subgroup aged 45 to 60 years (β = −0.70, 95%CI: −1.12, −0.29, p = 0.001). Moreover, the findings of the MVMR analysis implied that there was a direct causal effect between PM10 exposure and the decreased TB-BMD (45 < age < 60), after adjusting for PM2.5 and PM2.5 —10 exposure. Our study provides additional evidence to support the causal associations of higher concentrations of air pollutant exposure with decreased BMD, especially in those populations aged between 45 to 60 years, suggesting that early intervention measures and public policy should be considered to improve public health awareness and promote bone health.

Funder

Key Scientific Research Foundation of the Education Department of the Province Anhui

Natural Science Foundation of Anhui Medical University

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference48 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3