Intracellular Localization during Blood–Brain Barrier Crossing Influences Extracellular Release and Uptake of Fluorescent Nanoprobes

Author:

Muscetti Ornella1,Blal Naym12ORCID,Mollo Valentina1,Netti Paolo Antonio134,Guarnieri Daniela12ORCID

Affiliation:

1. Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy

2. Dipartimento di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy

3. Interdisciplinary Research Centre on Biomaterials, (CRIB), University of Naples Federico II, 80125 Naples, Italy

4. Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy

Abstract

To improve the efficacy of nanoparticles (NPs) and boost their theragnostic potential for brain diseases, it is key to understand the mechanisms controlling blood–brain barrier (BBB) crossing. Here, the capability of 100 nm carboxylated polystyrene NPs, used as a nanoprobe model, to cross the human brain endothelial hCMEC/D3 cell layer, as well as to be consequently internalized by human brain tumor U87 cells, is investigated as a function of NPs’ different intracellular localization. We compared NPs confined in the endo-lysosomal compartment, delivered to the cells through endocytosis, with free NPs in the cytoplasm, delivered by the gene gun method. The results indicate that the intracellular behavior of NPs changed as a function of their entrance mechanism. Moreover, by bypassing endo-lysosomal accumulation, free NPs were released from cells more efficiently than endocytosed NPs. Most importantly, once excreted by the endothelial cells, free NPs were released in the cell culture medium as aggregates smaller than endocytosed NPs and, consequently, they entered the human glioblastoma U87 cells more efficiently. These findings prove that intracellular localization influences NPs’ long-term fate, improving their cellular release and consequent cellular uptake once in the brain parenchyma. This study represents a step forward in designing nanomaterials that are able to reach the brain effectively.

Funder

University of Salerno

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3