Time-Marching Throughflow Analysis of Centrifugal Compressors with Boundary Conditions Based on Newton’s Method

Author:

Yang Chen,Du Juan,Zhang Hongwu,Wu Hu,Tang Qing,Yang JinguangORCID

Abstract

The meridional distribution of the flow parameters inside the centrifugal compressor is of great importance to its overall performance, as well as its matching performance under a thermal cycle. A time-marching throughflow method for the off-design performance analysis of the centrifugal compressor is described. The method is based on the strictly conservative throughflow-governing equations, and an improved method of boundary-condition enforcement is developed based on Newton’s method to achieve a robust and fast throughflow simulation. An inviscid blade force model was adopted to obtain the flow deflection inside the blade passage. Empirical loss models were integrated into the throughflow model to simulate the viscous force effects in the real three-dimensional flow. Two test cases are presented to validate the throughflow method by comparisons with the experimental data or CFD results, including the NASA low-speed centrifugal compressor (LSCC) and the Allison high-performance centrifugal compressor (HPCC). The simulation indicated that the developed enforcement method for the inlet and outlet boundary conditions significantly improves the computational robustness. For both the LSCC and HPCC cases, reasonable flow-parameter distribution was obtained and accurate overall characteristics were also predicted under the off-design conditions. The results indicated that the developed time-marching throughflow method is effective and efficient for the performance analysis of centrifugal compressors.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3