Review of the Modern Maximum Power Tracking Algorithms for Permanent Magnet Synchronous Generator of Wind Power Conversion Systems

Author:

Le Xuan Chau,Duong Minh QuanORCID,Le Kim Hung

Abstract

Wind energy conversion systems (WECSs) are considered green generators, environmentally friendly, and fully suitable energy sources to replace fossil energy sources. WECS’s output power is hugely dependent on the random nature of the wind. There are many solutions to improve the output power for WECSs, such as adjusting the profile of turbine blades, locating installation places, improving generators, etc. Nevertheless, maximum power point tracking (MPPT) algorithms for WECSs are optimal and the most effective because they are flexible in controlling different variable wind speeds and match all types of WECS. The parameters on the generator side control or the grid side control will be adjusted when MPPT algorithms are used, allowing the output power of WECSs to be maximized while maintaining stability in variable-speed wind. There are various MPPT algorithms, but the current problem is their efficiency and whether it requires deep knowledge to select the best MPPT solutions because each method has different advantages and disadvantages. This study has implemented an overview of modern maximum power tracking algorithms applied to permanent magnet synchronous generators in WECS with MPP methods based on speed convergence, efficiency, self-training, complexity, and measurement of wind parameters.

Funder

Ministry of Education and Training

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference88 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3