Effects of Carbon-Based Modified Materials on Soil Water and Fertilizer Retention and Pollution Control in Rice Root Zone

Author:

Huang Wei12,Jia Yangwen1ORCID,Niu Cunwen1ORCID,Zhang Hexi2,Wang Yongtao2,Feng Cheng2

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. Guizhou Institute of Water Resources Science, Guiyang 550002, China

Abstract

To seek an appropriate stabilization and remediation scheme for cadmium (Cd) and arsenic (As) pollution in farmland, a typical polluted soil sample was selected from a mining area in Southwest China for a soil box simulation experiment. Biochar (BC), a modified type of biochar made from rice husk with different mass ratios of ferric chloride and rice husk, was set up (the mass ratio of ferric chloride to rice husk was 1:9 (defined as LFB), 3:7 (defined as MFB), and 5:5 (defined as HFB) and the control group (BL)) to explore the effects of soil water and fertilizer loss, the bioavailability of Cd and As, and the bioenrichment effects of plant organs during the growth period of rice. The results showed that the porous structure and large specific surface area of biochar effectively regulated soil aggregate composition and improved soil water holding capacity. Compared to the BL treatment, soil water storage under the four carbon-based material control modes increased from 8.98% to 14.52%. Biochar has a strong ion exchangeability and can absorb soil ammonium, nitrogen, and phosphoric acid groups, effectively inhibiting the loss of soil fertilizer. Biochar improves soil pH and reduces the specific gravity of exchangeable Cd. In addition, the oxygen-containing functional groups in biochar can react with metals in a complex manner. The diethylenetriaminepentaacetic acid (DTPA) concentrations of Cd in soils treated with BC, LFB, MFB, and HFB were 79.69%, 72.92%, 64.58%, and 69.27% lower, respectively, than those treated with BL. In contrast, the Fe3+ in ferric chloride combines with As after hydrolysis and oxidation to form amorphous ferric arsenate precipitates or insoluble secondary minerals. Therefore, the curing effect of the modified biochar on As was more potent than that of applied biochar alone. In conclusion, ferric chloride-modified biochar can effectively inhibit the effects of water and fertilizer loss in farmland soil and realize cross-medium long-term inhibition and control of combined Cd and As pollution.

Funder

National Natural Science Foundation of China

Independent Research Project of State Key Laboratory of Simulations and Regulation of Water Cycle in River Basin

Special Support Funds for National High-level Talents 60

Major Science and Technology Project of the Ministry of Water Resources

Water Conservancy Science and Technology Project of Guizhou Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3