Cooperative Optimization of A Refrigeration System with A Water-Cooled Chiller and Air-Cooled Heat Pump by Coupling BPNN and PSO

Author:

Deng QinliORCID,Xu LiangxinORCID,Zhao Tingfang,Hong Xuexin,Shan Xiaofang,Ren Zhigang

Abstract

Aiming at the issues of unreasonable cooperation schemes and inappropriate setting of parameters of the refrigeration system with multi-chiller plants, this paper presents a cooperative optimization method to improve the energy performance of the system composed of water-cooled chillers and air-cooled heat pumps. The cooperative optimization process includes scheme optimization and parameter optimization. To content the dynamic cooling load, the working sequence of air-cooled heat pumps and water-cooled chillers with variable frequency chilled water pumps is first optimized. Based on the optimal scheme, a back-propagation neural network (BPNN) coupled with particle swarm optimization (PSO) is implemented to explore the preferred operating parameters of multiple chiller plants corresponding to the best coefficient of performance (COP). Compared with the performance of the initial operation module, the energy consumption of the water pump and fan decreases by over 50%, and the COP of the refrigeration system is improved by 16% (COP = 3.85) through the scheme operation. After parameter optimization, the total energy consumption is reduced by 21.7%, and COP is increased by 26.5% (COP = 4.20). Therefore, the proposed cooperative optimization method can provide useful operation guidance for the refrigeration system with multi-chiller plants.

Funder

Sanya Science and Education Innovation Park of Wuhan University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3