Full-Core Coupled Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Analysis of Low-Enriched Uranium Nuclear Thermal Propulsion Reactors

Author:

Krecicki MattORCID,Kotlyar DanORCID

Abstract

Nuclear thermal propulsion is an enabling technology for future space missions, such as crew-operated Mars missions. Nuclear thermal propulsion technology provides a performance benefit over chemical propulsion systems by operating with light propellants (e.g., hydrogen) at elevated engine chamber conditions. Therefore, nuclear thermal propulsion reactor cores exhibit high propellant velocities and elevated propellant and fuel temperatures, subsequently leading to relatively high thermal stresses and geometrical deformation. This paper details the numerical approach to solve the thermo-elastic equations, which was implemented into the recently developed ntpThermo code. In addition, this paper demonstrates the extension of the Basilisk multiphysics framework to perform full-core coupled neutronic, thermal-hydraulic, and thermo-mechanical analysis of nuclear thermal propulsion reactors. The analyses demonstrate and quantify thermo-mechanical feedback, which for the investigated cases, acted to reduce maximum fuel temperatures and pressure drop across the fuel element channels. Thermo-mechanical feedback had a significant impact on the mass flow distribution within the reactor core and, thus, a substantial impact on solid-material temperatures and stresses, but only a minor impact on reactivity and local power distributions. Sensitivity studies revealed that the friction factor correlation applied to perform the analysis has a significant impact on the pressure drop across the fuel element channels. The most important observation of this research is the importance of incorporating the thermo-mechanical feedback within an integrated multiphysics solution sequence to enable the consistent design of future nuclear thermal propulsion systems.

Funder

BWX Technologies

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Space Nuclear Propulsion Fuel and Moderator Development Plan Conceptual Testing Reference Design;Gustafson;Proceedings of the Nuclear and Emerging Technologies for Space,2021

2. HALEU NTP Update-Subscale Prototype and Full Scale Designs;Joyner;Proceedings of the Nuclear and Emerging Technologies for Space,2021

3. Evolution of MOOSE and MOOSE-Based Tools to Address Analysis Challenges. INL/MIS-21-62652-Revision-0,2021

4. Demonstration Rocket for Agile Cislunar Operations (DRACO) Phase 2 and Phase 3,2022

5. Space Nuclear Propulsion for Human Mars Exploration,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3