Affiliation:
1. School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth 6102, Australia
Abstract
Atmospheric turbulence primarily originates from abrupt density variations in a vertically stratified atmosphere. Based on the prognostic equation of turbulent kinetic energy (TKE), we here chose three indicators corresponding to the forcing terms of the TKE generation. By utilizing ERA5 reanalysis data, we investigate first the maximum achievable daily thickness of the planetary boundary layer (PBL). The gradient Richardson number (Ri) is used to represent turbulence arising from shear instability and the daily maximum convective available potential energy (CAPE) is examined to understand the turbulence linked with convective instability. Our analysis encompasses global turbulence trends. As a case study, we focus on the North Atlantic Corridor (NAC) to reveal notable insights. Specifically, the mean annual number of hours featuring shear instability (Ri < 0.25) surged by more than 300 h in consecutive 20-year periods: 1979–1998 and 1999–2018. Moreover, a substantial subset within the NAC region exhibited a notable rise of over 10% in the number of hours characterized as severe shear instability. Contrarily, turbulence associated with convective instability (CAPE > 2 kJ/kg), which can necessitate rerouting and pose significant aviation safety challenges, displays a decline. Remote sensing of clouds confirms these assertions. This decline contains a component of inherent natural variability. Our findings suggest that, as air viscosity increases and hence a thickened PBL due to a warming climate, the global inflight turbulence is poised to intensify.
Reference76 articles.
1. Aviation impacts on fuel efficiency of a future more viscous atmosphere;Ren;Bull. Amer. Meteor. Soc.,2020
2. Atmospheric turbulence and its relation to aircraft;Zbrozek;Nature,1962
3. Atmospheric science and public policy;Zillman;Science,1997
4. Aviation and global climate change in the 21st century;Lee;Atmos. Environ.,2009
5. ICAO (2014). 2013–2028 Global Air Navigation Capacity and Efficiency Plan, International Civil Aviation Organization.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献