Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions

Author:

Orman Łukasz Jan1,Siwczuk Natalia1ORCID,Radek Norbert2,Honus Stanislav3,Piotrowski Jerzy Zbigniew1,Dębska Luiza1

Affiliation:

1. Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland

2. Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland

3. Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic

Abstract

This paper experimentally analyses an indoor environment assessment of a large group of respondents regarding their subjective perception of overall comfort, indoor air quality and humidity. The questionnaire survey was applied as a testing method together with measurements of the physical parameters conducted with a microclimate meter. Two types of environment were analysed: educational rooms and the climate chamber. The comparative analysis of the sensations experienced within them indicates that they generate quite similar responses; however, some discrepancies have been identified. The overall comfort of the climate chamber was typically assessed as being higher than that of the educational rooms at the same air temperature. The most favourable air temperature in the climate chamber was ca. 20.7 °C, while in the educational rooms it was ca. 22.3 °C. The most preferable conditions in the climate chamber occurred at a thermal sensation vote of −0.4 (“pleasantly slightly cool”), while in the educational rooms it occurred at +0.2 (“neutral/pleasantly slightly warm”). Quite strong correlations between overall comfort and indoor air quality as well as between humidity assessment and humidity preference votes were observed, which did not seem to depend on the type of environment. These findings are important because results from the simulated conditions are often used in the analyses of actual living/working environments.

Funder

European Union

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3