Numerical Calculation and Application for Crushing Rate and Fracture Conductivity of Combined Proppants

Author:

Guo Zixi1ORCID,Chen Dong2,Chen Yiyu3

Affiliation:

1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

2. China United Coalbed Methane National Engineering Research Center, Beijing 100095, China

3. PetroChina Coalbed Methane Company Limited, Beijing 100028, China

Abstract

Proppant is one of the key materials for hydraulic fracturing. For special situations, such as middle-deep reservoirs and closure pressures ranging from 40 MPa to 60 MPa, using a single proppant cannot solve the contradiction between performance, which means crushing rate and fracture conductivity, and cost. However, using combined proppants is an economically effective method for hydraulic fracturing of such special reservoirs. Firstly, for different types, particle sizes, and proportions of combined proppants, various contact relationships between proppant particles are considered. The random phenomenon of proppant particle arrangement is described using the Monte Carlo method, and the deterministic phenomenon of proppant particles is processed using an optimization model, achieving computer simulation of the microscopic arrangement of proppant particles. Secondly, a mathematical model for the force analysis of combined proppant particles is established, and an improved singular value decomposition method is used for numerical solution. A computational model for the crushing rate and fracture conductivity of combined proppants is proposed. Thirdly, the numerical calculation results are compared and discussed with the test values, verifying the accuracy of the computational model. Finally, the application of combined proppants is discussed, and a model for optimizing the proportion of combined proppants is proposed. The onsite construction technology is introduced, and the cost and economic benefits of combined proppants are compared with those of all ceramic particles and excessive all-quartz sand. It is proved that combined proppants can balance performance and price, and are an economically effective method for hydraulic fracturing of special reservoirs. The research results can select the optimal proppant material and optimize the combination of different proppant types, which can help achieve cost reduction and efficiency increase in oil and gas development.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3