New N-Substituted-1,2,4-triazole Derivatives of Pyrrolo[3,4-d]pyridazinone with Significant Anti-Inflammatory Activity—Design, Synthesis and Complementary In Vitro, Computational and Spectroscopic Studies

Author:

Szczukowski ŁukaszORCID,Krzyżak EdwardORCID,Wiatrak BenitaORCID,Jawień Paulina,Marciniak AleksandraORCID,Kotynia AleksandraORCID,Świątek PiotrORCID

Abstract

Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.

Funder

Ministry of Health subvention from the IT Simple system of Wroclaw Medical University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3