Enhanced Propanol Response Behavior of ZnFe2O4 NP-Based Active Sensing Layer Induced by Film Thickness Optimization

Author:

Nemufulwi Murendeni I.,Swart Hendrik C.ORCID,Mhlongo Gugu H.

Abstract

Development of gas sensors displaying improved sensing characteristics including sensitivity, selectivity, and stability is now possible owing to tunable surface chemistry of the sensitive layers as well as favorable transport properties. Herein, zinc ferrite (ZnFe2O4) nanoparticles (NPs) were produced using a microwave-assisted hydrothermal method. ZnFe2O4 NP sensing layer films with different thicknesses deposited on interdigitated alumina substrates were fabricated at volumes of 1.0, 1.5, 2.0, and 2.5 µL using a simple and inexpensive drop-casting technique. Successful deposition of ZnFe2O4 NP-based active sensing layer films onto alumina substrates was confirmed by X-ray diffraction and atomic force microscope analysis. Top view and cross-section observations from the scanning electron microscope revealed inter-agglomerate pores within the sensing layers. The ZnFe2O4 NP sensing layer produced at a volume of 2 μL exhibited a high response of 33 towards 40 ppm of propanol, as well as rapid response and recovery times of 11 and 59 s, respectively, at an operating temperature of 120 °C. Furthermore, all sensors demonstrated a good response towards propanol and the highest response against ethanol, methanol, carbon dioxide, carbon monoxide, and methane. The results indicate that the developed fabrication strategy is an inexpensive way to enhance sensing response without sacrificing other sensing characteristics. The produced ZnFe2O4 NP-based active sensing layers can be used for the detection of volatile organic compounds in alcoholic beverages for quality check in the food sector.

Funder

Department of Science and Innovation, South Africa

Council for Scientific and Industrial Research, South Africa

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3