Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System

Author:

Kim Sunghun1,Park Youngjin1,Yoo Seungbeom1,Lim Ocktaeck2ORCID,Samosir Bernike Febriana2

Affiliation:

1. Sejong R&D Center, 23 Hyosan 1-gil, Buk-gu, Ulsan 44252, Republic of Korea

2. School of Mechanical Engineering, University of Ulsan, San 29, Mugeo2-dong, Nam-gu, Ulsan 44610, Republic of Korea

Abstract

Machine learning is used in this study to deal with the reduction in the design period and major performance improvement of the selective catalyst reduction system. The selective catalyst reduction system helps in the reduction in NOx emission in the diesel engine. The existing methods for the design and performance improvement of selective catalyst reduction systems tend to be inefficient, due to layout changes that require modification when mounting a vehicle based on previously designed models. There are some factors that can affect the design of the diesel engine selective catalyst reduction system that can be identified by applying an optimized design. The Taguchi orthogonal array design is used with the eight factors and three levels of the main design factors. The distance of the urea injector, the distance of the mixer, the inflow angle of the exhaust gas, the angle of the urea injector, the angle of the mixer, the mounting angle in the direction of rotation of the mixer inside the selective catalyst reduction pipe, the number of mixer blades, the and bending angle of the mixer blade are identified as the eight major factors involved. These factors can also be considered manufacturing factors and can be established through machine learning. Machine learning has the advantage of being more efficient compared to other methods in determining the relationship between the data for each mutual factor. Machine learning can help in reducing processing time, which can further decrease the cost of the design analysis and improve the performance of the selective catalyst reduction system. This study shows that the results are statistically significant as the p values of the mixer blade number and cone length are lower than 0.05.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3