Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules

Author:

Benites Mariana,Millo Christian,Hein James,Nath Bejugam,Murton Bramley,Galante Douglas,Jovane LuigiORCID

Abstract

Ferromanganese nodules grow by precipitation of metals from seawater and/or sediment pore water. The formation of different genetic types depends on the composition and redox conditions of the water and upper sediment layers, water depth, and primary productivity in surface waters. Many characteristics of nodules have been used to investigate their genesis. In this paper, we compare nodules from different environments using Computed Tomography, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Micro X-ray Fluorescence data to better understand how geochemical differences are linked to different morphological features. We use representative samples of purely hydrogenetic nodules and mixed-type nodules with various proportions of hydrogenetic and diagenetic growth laminae. Our results show a micrometric alternation between high-absorbance massive Mn-enriched (Mn/Fe up to 40) laminae and low-absorbance dendritic Mn-depleted (Mn/Fe about 1) laminae in mixed-type nodules, suggesting the rhythmic alternation of hydrogenetic oxic conditions and suboxic diagenetic input. This micro-rhythmic alternation is absent in purely hydrogenetic nodules, which are homogenous both chemically and morphologically. A conceptual model is proposed to account for these geochemical and morphological differences in terms of the vertical migration of the oxic-suboxic front relative to the base of the nodules.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference52 articles.

1. Deep-sea nodules: Distribution and geochemistry;Cronan,1977

2. Marine Manganese Deposits;Glasby,1977

3. The Mineral Resources of the Sea;Mero,1965

4. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean

5. The geology of manganese nodules;Hein,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3