Climatic Change Characteristics towards the “Warming–Wetting” Trend in the Pan-Central-Asia Arid Region

Author:

Yan Xinyang,Zhang Qiang,Ren Xueyuan,Wang Xiaoyong,Yan Xiaomin,Li Xiaoqin,Wang Lan,Bao Lili

Abstract

In recent years, the warming–wetting trend in the arid region of Northwest China has attracted widespread attention. To reveal whether this phenomenon exists in the whole Pan-Central-Asia arid region, this paper adopts the latest monthly gridded dataset of the Climate Research Unit Time Series version 4.05 (CRU TS v4.05) and the multi-model ensemble data of the Coupled Model Intercomparison Project Phase 6 (CIMP6) for discussion from multiple perspectives. The results show that the Pan-Central-Asia arid region has been getting warmer and wetter in the last 80 years. Since the turn of the 21st century, there has been an apparent slowdown in the regional wetting trend despite the acceleration of precipitation increase, mainly caused by the growth in evapotranspiration potential. The interannual scale dominates the precipitation change, including significant quasi-three-year and quasi-six-year cycles. The interannual variability in precipitation is mainly affected by the change in the phases of Pacific decadal oscillation (PDO), while long-term variation dominates the temperature change, which is significantly related to the variations in the Arctic oscillation (AO). Thus, future research and predictions of regional precipitation should focus on the PDO variations, followed by the Southern Oscillation Index (SOI), whereas for research on, and predictions of, temperature, the effect of AO variations should be emphasized. Except for a few regions in Central-Eastern Mongolia and Central Kazakhstan, precipitation levels in most parts of the Pan-Central-Asia region have been increasing. The regional temperature exhibits a distribution pattern which decreases from northwest to southeast. The increase in precipitation in the Pan-Central-Asia arid region alleviates the drought in most regions, including most of Northwest China. However, the arid and semi-arid climate patterns in this region have not changed. The warming–wetting trend will significantly accelerate in medium-emissions scenarios in the next 80 years. Although the increase in precipitation may be a positive aspect of this trend, the rise in potential evapotranspiration caused by sharp warming may cause greater challenges to the regional climate and ecological environment.

Funder

National Natural Science Foundation of China

Drought Meteorological Science Research Fund of Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3