Author:
Xiao Xiaolan,Deng Jiayun,Xiong Qiang,Yan Qiusheng,Wu Zhengtao,Lin Huatay
Abstract
Si3N4 ceramic is generally recognized as being difficult to machine due to its hardness and brittleness. It is necessary to control the normal load applied and the machined depth of the abrasive particles in order to eliminate surface/subsurface damage and defects during the grinding or polishing. In this study, scratch experiments were conducted on the polished surface of Si3N4 specimens to investigate the brittle–ductile transformation and the evolution of material removal mechanisms. In addition, the cracking behaviour of Si3N4 ceramic was characterized by indentation tests. The Vickers indentation produced cracks that exhibited good developmental integrity and geometric symmetry. The results indicate that the scratch track can be divided into three stages: the ductile regime, the brittle–ductile coexisting stage, and the brittle fracture regime. The critical loads and the corresponding penetration depths of cracking occurrence in Si3N4 were recorded. The material removal of Si3N4 ceramic was primary attributed to ductile regime removal when the load was less than 9.8 N. Microcrack initiation on the subsurface was observed when the penetration depth of the scratch tip reached 8 μm or the depth of the indentation tip reached 3.2 μm. Microcracks expanded rapidly as the load was further increased, resulting in a brittle fracture of the Si3N4 ceramic.
Funder
National Natural Science Foundation of China-Guangdong Joint Fund
National Natural Science Foundation of China
National key R & D plan
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献