Affiliation:
1. Faculty of Printing Industry, Moscow Polytechnic University, 107023 Moscow, Russia
Abstract
We investigated the effect of electro-induced multi-gas modification (EIMGM) duration on the adhesion and wear resistance of PET and LDPE polymer substrates used in the printing industry. It was found that EIMGM increases the polar component and the complete free surface energy from 26 to 57 mJ/m2 for LDPE and from 37 to 67 mJ/m2 for PET (due to the formation of oxygen-containing groups on the surface of the materials). Although the degree of textural and morphological heterogeneity of the modified LDPE increased more than twice compared to the initial state, it is not still suitable for application as a substrate in extrusion 3D printing. However, for PET, the plasma-chemical modification contributed to a significant increase (~5 times) in filament adhesion to its surface (due to chemical and morphological transformations of the surface layers) which allows for using the FFF technology for additive prototyping on the modified PET-substrates.
Funder
Ministry of science and higher education of the Russian Federation
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献