Endoreplication—Why Are We Not Using Its Full Application Potential?

Author:

Kołodziejczyk Izabela1,Tomczyk Przemysław2ORCID,Kaźmierczak Andrzej3ORCID

Affiliation:

1. Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/14, 90237 Lodz, Poland

2. The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96100 Skierniewice, Poland

3. Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90237 Lodz, Poland

Abstract

Endoreplication—a process that is common in plants and also accompanies changes in the development of animal organisms—has been seen from a new perspective in recent years. In the paper, we not only shed light on this view, but we would also like to promote an understanding of the application potential of this phenomenon in plant cultivation. Endoreplication is a pathway for cell development, slightly different from the classical somatic cell cycle, which ends with mitosis. Since many rounds of DNA synthesis take place within its course, endoreplication is a kind of evolutionary compensation for the relatively small amount of genetic material that plants possess. It allows for its multiplication and active use through transcription and translation. The presence of endoreplication in plants has many positive consequences. In this case, repeatedly produced copies of genes, through the corresponding transcripts, help the plant acquire the favorable properties for which proteins are responsible directly or indirectly. These include features that are desirable in terms of cultivation and marketing: a greater saturation of fruit and flower colors, a stronger aroma, a sweeter fruit taste, an accumulation of nutrients, an increased resistance to biotic and abiotic stress, superior tolerance to adverse environmental conditions, and faster organ growth (and consequently the faster growth of the whole plant and its biomass). The two last features are related to the nuclear-cytoplasmic ratio—the greater the content of DNA in the nucleus, the higher the volume of cytoplasm, and thus the larger the cell size. Endoreplication not only allows cells to reach larger sizes but also to save the materials used to build organelles, which are then passed on to daughter cells after division, thus ending the classic cell cycle. However, the content of genetic material in the cell nucleus determines the number of corresponding organelles. The article also draws attention to the potential practical applications of the phenomenon and the factors currently limiting its use.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3