Systematic Review, Meta-Analysis and Radiomics Quality Score Assessment of CT Radiomics-Based Models Predicting Tumor EGFR Mutation Status in Patients with Non-Small-Cell Lung Cancer

Author:

Felfli Mehdi1ORCID,Liu Yan1ORCID,Zerka Fadila1,Voyton Charles1,Thinnes Alexandre1,Jacques Sebastien1,Iannessi Antoine12,Bodard Sylvain34ORCID

Affiliation:

1. Median Technologies, F-06560 Valbonne, France

2. Centre Antoine Lacassagne, F-06100 Nice, France

3. AP-HP, Service d’Imagerie Adulte, Hôpital Necker Enfants Malades, Université de Paris Cité, F-75015 Paris, France

4. CNRS UMR 7371, INSERM U 1146, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, F-75006 Paris, France

Abstract

Assessment of the quality and current performance of computed tomography (CT) radiomics-based models in predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small-cell lung carcinoma (NSCLC). Two medical literature databases were systematically searched, and articles presenting original studies on CT radiomics-based models for predicting EGFR mutation status were retrieved. Forest plots and related statistical tests were performed to summarize the model performance and inter-study heterogeneity. The methodological quality of the selected studies was assessed via the Radiomics Quality Score (RQS). The performance of the models was evaluated using the area under the curve (ROC AUC). The range of the Risk RQS across the selected articles varied from 11 to 24, indicating a notable heterogeneity in the quality and methodology of the included studies. The average score was 15.25, which accounted for 42.34% of the maximum possible score. The pooled Area Under the Curve (AUC) value was 0.801, indicating the accuracy of CT radiomics-based models in predicting the EGFR mutation status. CT radiomics-based models show promising results as non-invasive alternatives for predicting EGFR mutation status in NSCLC patients. However, the quality of the studies using CT radiomics-based models varies widely, and further harmonization and prospective validation are needed before the generalization of these models.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lung Cancer Detecting using Radiomics Features and Machine Learning Algorithm;2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3