GADD45A and GADD45B as Novel Biomarkers Associated with Chromatin Regulators in Renal Ischemia-Reperfusion Injury

Author:

Xie Ming1ORCID,Xie Ruiyan2,Huang Pengcheng1,Yap Desmond Y. H.2ORCID,Wu Peng1

Affiliation:

1. Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

2. Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China

Abstract

Chromatin regulators (CRs) are essential upstream regulatory factors of epigenetic modification. The role of CRs in the pathogenesis of renal ischemia-reperfusion injury (IRI) remains unclear. We analyzed a bioinformatic analysis on the differentially expressed chromatin regulator genes in renal IRI patients using data from public domains. The hub CRs identified were used to develop a risk prediction model for renal IRI, and their expressions were also validated using Western blot, qRT-PCR, and immunohistochemistry in a murine renal IRI model. We also examined the relationships between hub CRs and infiltrating immune cells in renal IRI and used network analysis to explore drugs that target hub CRs and their relevant downstream microRNAs. The results of machine learning methods showed that five genes (DUSP1, GADD45A, GADD45B, GADD45G, HSPA1A) were upregulated in renal IRI, with key roles in the cell cycle, p38 MAPK signaling pathway, p53 signaling pathway, FoxO signaling pathway, and NF-κB signaling pathway. Two genes from the network, GADD45A and GADD45B (growth arrest and DNA damage-inducible protein 45 alpha and beta), were chosen for the renal IRI risk prediction model. They all showed good performance in the testing and validation cohorts. Mice with renal IRI showed significantly upregulated GADD45A and GADD45B expression within kidneys compared to sham-operated mice. GADD45A and GADD45B showed correlations with plasmacytoid dendritic cells (pDCs) in infiltrating immune cell analysis and enrichment in the MAPK pathway based on the weighted gene co-expression network analysis (WGCNA) method. Candidate drugs that target GADD45A and GADD45B include beta-escin, sertraline, primaquine, pimozide, and azacyclonol. The dysregulation of GADD45A and GADD45B is related to renal IRI and the infiltration of pDCs, and drugs that target GADD45A and GADD45B may have therapeutic potential for renal IRI.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Wai Im Charitable Foundation

Chan Sui Kau Family Benefits and Charitable Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3